
ORIGINAL ARTICLE

QSPR probing of Na+ complexation with 15-crown-5 ethers
derivatives using artificial neural network and multiple linear
regression

Hiua Daraei • Mohsen Irandoust • Jahan B. Ghasemi •

Ali Reza Kurdian

Received: 4 May 2011 / Accepted: 18 June 2011 / Published online: 7 July 2011

� Springer Science+Business Media B.V. 2011

Abstract A quantitative structure–property relationship

(QSPR) study is performed to develop a model, relating to

Na? complex stability constant (log K) and the structure of

74 derivatives of 1,4,7,10,13-pentaoxacyclo-pentadecane

ethers (15C5). Stepwise Multiple Linear Regression

(SMLR) and Artificial Neural Network (ANN) methods have

been exploited as linear and nonlinear methods, respectively

to build the QSPR model. MOPAC software embedded in

ChemOffice 2004 package was used for the minimizing

energy using semi-empirical AM1 method. The optimum

structures have been applied to generate more than 50

descriptors using available servers in ChemOffice 2004. The

five most important constitutional, steric, electronic, ther-

modynamic and molecular descriptors were selected using

the common preselection method combined by SMLR

method. SMLR and ANN models were constructed based on

the five selected descriptors. Both proposed models effi-

ciently predict log K of 15C5 complexes. However, the

results of ANN were more effective respect to SMLR model.

This phenomenon reveals that log K of 15C5 complexes have

a deviation from linear behavior related to the selected

descriptors.

Keywords Quantitative structure–property relationship �
1,4,7,10,13-pentaoxacyclo-pentadecane ethers � Sodium

ion � Stability constant � Artificial neural network

Introduction

Crown ethers are compounds with multiple oxygen het-

eroatoms (three or more) incorporated in a monocyclic

carbon backbone. They were first synthesized by Pedersen

in 1967 [1, 2]. Their generic name originates from their

molecular shape, reminiscent of a royal crown [3]. Because

of their selective complex formation with hard metal ions

as well as their negligible water solubility, crown ethers

have been extensively used as suitable ion-carriers in sol-

vent–solvent and solid phase extractions [4–7], ion-trans-

port [8–10], ion-selective and PVC membrane ion-selective

electrode studies [11–13], and the crown ether complexes

were applied as a nano-switch recently [14–16].

The complexation of these molecules with suitable well-

tailored ions may be considered as trigger step accounting

for this widely applications. Among plenty studied ions,

alkali metal ions are under attention [17]. Therefore, pre-

dicting the log K values of the complexation reactions as

the most important complexation property without expend

the time and cost in laboratory is a motive to use the

quantitative structure property relationship (QSPR) in this

branch of chemistry [3].

Quantitative structure activity and structure–property

relationship (QSAR/QSPR) studies are unquestionably of

great importance in modern chemistry and biochemistry

[18]. Currently, these methods are increasingly employed
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in the prediction of chemical and physical properties or

bioactivities of different types of molecules [3, 19–27]. In

the field of complexation, these methods have potential

applications to predict log K that has been developed with

the help of QSPR [3].

The successful applications have inspired us to perform

more exhaustive study in order to validate the applicability

of traditional QSPR. Furthermore, the analog complexa-

tion reactions have been experimentally studied recently

[28–30], due to its advantages authors have seriously

attempted to develop QSPR in this filed [3].

Materials and methods

Dataset

The 74 studied 15C5 derivatives of chemical structures and

their experimental complex stability constants values with

Na? ion taken from the literature [17] are presented in

Table 1. Since both the temperature and solvent affect the

log K, we used data obtained at standard temperature

(25 �C) and just in methanol solution [3].

The dataset was split into training and testing sets for

SMLR study. The same train set was used to construct the

ANN model. Nevertheless SMLR test dataset was split into

validation and test sets for ANN. The training set of 53

complexes was used to adjust the parameters of the models.

The test set of 21 complexes was used to evaluate SMLR

model prediction ability. The validation set of 7 complexes

was used to prevent overtrain and the test set of 14 com-

plexes was used to evaluate ANN model prediction ability

[31]. Members of each set were assigned randomly [27].

Molecular modeling, molecular optimization

and descriptor generation

The structures were drawn in ChemDraw Ultra8 and

exported into a file with compatible format with MOPAC

program. The minimization of energy was performed on

a PC computer with Intel (R) Pentium (R) Dual CPU with

windows XP operating system with the semi-empirical

quantum method Austin Model 1 (AM1) [32] embedded

in the MOPAC program. The gradient norm criterion

0.001 kcal/mol in presence of precise keyword was applied

in order to the minimize energy for all structures.

MOPAC output files were used by the ChemPropPro,

ChemPropStd, CLogP, MM2, MOPAC and Topology

Indices servers embedded in ChemOffice 2004 program to

compute more than 40 steric, electronic, and thermody-

namic descriptors for the all 74 optimized 15C5 structures.

The generation of the descriptors is carried out without

taking into account of the solvation of the ligands

molecules. It means that the generated descriptors are

carried out using the gas-phase geometry calculation of

AM1.

Selection of molecular descriptors

A preselection of descriptors was carried out by eliminat-

ing those descriptors that are not available for each struc-

ture, descriptors having a small variation in magnitude for

all structures and descriptors which exhibit a very small

correlation with log K values combines with a SMLR

method to more reduce in pool of descriptors to receive a

minimum number of most important descriptors [27].

Stepwise, forward and backward SMLR are commonly

used regression methods which are proposed to evaluate

only a small number of subsets by either adding or deleting

variables one at a time according to a specific criterion [25,

27, 33]. The forward selection method adds variables to the

model one at a time. The first variable included in the

model is the one which has the highest correlation with the

independent variable log K. The variable that enters the

model as the second variable is one which has the highest

correlation with log K, after log K has been adjusted for the

effect of the first variable. This process terminated when

the last variable entering the model has insignificant

regression coefficients or all the variables are included in

the model [34]. In contrast to forward selection, backward

elimination begins with the full model and successively

eliminates one at a time. The first variable deleted is the

one with the smallest contribution to the reduction of

predictive error sum of squares (PRESS). Assuming that

there are more variables that are insignificant, the process

operates by eliminating the next most insignificant vari-

able. The process is terminated when all the variables are

significant or all but one variable has been deleted.

In stepwise procedure a variable that entered the model

in the earlier stages of selection may be deleted at the later

stages. The calculations made for inclusion and elimination

of variables are the same as forward selection and back-

ward procedures. That is, the stepwise method is essen-

tially a forward selection procedure, but at any stages the

possibility of deleting a variable, as in backward elimina-

tion, is considered. The number of variables retained in the

model is based on the levels of significance assumed for

inclusion and exclusion of variables from the model that is

assumed 0.05 and 0.1, respectively here.

Methodology of modeling

The selected descriptors for the 53 15C5 derivatives and

correspond Na? complex log K values were correlated by

SMLR and nonlinear ANN models. The SMLR analysis, a
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Table 1 chemical structure of 74 studied 15C5

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

67 68 69 70 71 72

73 74
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commonly used method in QSPR study, was employed to

establish the quantitative regression models [3, 25, 35].

Equation 1 gives the mathematical representation of the

linear equation that should correlate the best log K with a

certain number (n) of molecular descriptors (di) weighted

by the regression coefficients bi:

logK ¼ b0 þ Rbidi I ¼ 1; 2; . . .; n: ð1Þ

Then the same data set and descriptors was used to build

the nonlinear model using ANNs.

ANNs are parallel computational devices consisting of

groups of highly interconnected processing elements called

neurons. Neural networks are characterized by topology,

computational characteristics of their elements, and train-

ing rules. Customary neural network have neurons arran-

ged in a series of layers consist of an input, a hidden, and

an output layer. The first layer is input layer that does not

process the information; it only distributes the input vectors

to the hidden layer. The last layer is the output layer, and

its neurons handle the output from the network. The layers

of neurons between the input and output layers are called

hidden layers. Each layer may make its independent

computations and may pass the results yet to another layer.

In feed-forward neural networks the connections among

neurons are directed upwards, i.e. connections are not

allowed among the neurons of the same layer or the pre-

ceding layer. Networks where neurons are connected to

themselves, with neurons in the same layer or neurons from

a preceding layer, are termed feedback or recurrent net-

works [36].

Feed forward backpropagation network have been used

in this study because it is very fast, easy to use and some

other advantages [31]. This algorithm is multilayer feed-

forward neural networks trained by backpropagation of

errors (traditionally) using gradient descent with momen-

tum weight and bias learning function. The weights of the

connections between neurons being adjusted in order to

decrease the mean squared error (MSE) between calculated

and expected values for all train molecules in the database

[37].

Data set was randomly divided into three parts. The

training set was used to adjust the parameters of the

models, and testing set used to evaluate its prediction

ability. An important problem of neural networks is over-

training probability. An overtrained network has usually

learned the pattern it has seen (training set) perfectly but

cannot give accurate predictions for unseen compounds,

and it is no longer able to generalize. There are several

methods for avoiding this problem. One of the superior

methods is to use a test set to validate the prediction power

of the network during its training [22, 31].

Results and discussion

SMLR modeling

The SMLR method was used to develop the linear model

for the prediction of log K using all the descriptors which

remain after preselection step for training data set. The

number of descriptors reduced from more than 40–30 using

preselection method. The plot of the number of descriptors

involved in the obtained models versus square correlation

coefficient (R2) and the cross-validated square correlation

coefficient (R2 adjusted) corresponding to those models is

shown in Fig. 1. The model corresponding to the break

point shows the optimum number of descriptors to be used

in linear modeling that presented in Eq. 2.

logK ¼ 12:78152� 0:08124d1 þ 0:008912d2 � 0:01433d3

þ 2:19� 10�7d4 þ 0:000734d5

ð2Þ

As seen from Eq. 2, five descriptors model were selected in

SMLR process. The log K is assumed to be highly dependent

upon the stretch energy, d1, freezing point, d2, critical tem-

perature, d3, d4, and heat of formation, d5. The values of these

five descriptors for 74 15C5 are listed in Table 2.

The linear QSPR model has been generated using a

training set of 53 crown ethers. The test set of 21 crown

ethers was used to assess the predictive ability of the QSPR

model produced in the regression. The linear model sta-

tistical parameters have been presented in Table 3.

where bi, standard error and t-test are the regression

coefficients, standard errors of the regression coefficients

and t significance, respectively.

The SMLR predicted values of log K are presented in

Table 4. The stability and validity of the model was tested

by prediction of the response values for the test set.

The plots of predicted log K versus experimental log

K are presented in Fig. 2.

ANN modeling

After the linear model establishing, ANN was then used to

develop a nonlinear model based on the SMLR same subset

[27] just the test set that was used in SMLR study, split to a

validation and test set in order to prevent of overtrain and

to evaluate the prediction ability of the models corre-

spondingly. The input and output data have been normal-

ized before using to construct and to test the ANN models

[36]. The inputs were normalized by the Eq. 3.

pst ¼
p� p

stdp
ð3Þ
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where p, p, stdp and pst are the input vector, mean value of

the input vector, standard deviation value of the input

vector and standardized value of p values, respectively.

Also the output values were normalized by the Eq. 4.

tst ¼
2ðt � tminÞ
tmax � tmin

� 1 ð4Þ

where t, tmin, tmax and tst are the output vector, minimum

value of the output vector, maximum value of the output

vector and standardized value of t values, respectively.

In order to obtain better results, the parameters that

influence the performance of ANN models were optimized.

The selection of the optimal number of hidden layer,

number of hidden layer neurons, transfer function types

and learning rate value for ANN was performed by sys-

temically changing their values and types in the training

step [27].

Once the network has been trained, the weights of each

neuron are saved in the ANN model and could be used to

predict log K for unknown compound. The parameters

which determine the ANN have been listed in Table 5. The

best ANN model constructed using 1 hidden layer with 13

neuron, tansig as a transfer function for both hidden layer

and output layer, and 0.11 learning rate.

The tansig transfer function defines as Eq. 5.

a ¼ tansigðnÞ ¼ 2

ð1þ expð�2nÞÞ � 1 ð5Þ

The architecture of best obtained (5-13-1) ANN model has

been showed in Fig. 3.

The predicted results of the ANN models are shown in

Table 4 and Fig. 4.

Comparison between ANN and SMLR models

In this study, our goal was set to measure the predictive

ability of the ANN model by comparison with SMLR

method. On the basis of this test and all the other infor-

mation presented here, it appears that the ANN model

described here is very superior for predicting log K of

complexation reaction related compounds.

The differences in the results of predictions obtained by

using different models are as function of the modeling

approach employed, the descriptors used and the data set of

compounds [20]. The ANN model presented here obvi-

ously gives the better statistical results. A summary of the

comparisons of ANN with SMLR is given in Table 4. In

addition, the consistency of the ANN model as compared

with SMLR method was revealed by test quantified with

predictive Q2.

The Q2 values measure the goodness of the predictions

of the held out cases exactly in the same way as R2 does

with the cases included in the modeling phase. But Q2 is

always lower and may be even negative if the predictions

are worse than just using the average value of the response.

The Q2 value should be at least 0.3–0.4 in order to assess

that the model has statistically significant prediction ability

[20, 21, 38]. The Q2 values of the models are calculated by

the Eq. 6.

Fig. 1 Correlation and cross-

validated correlation

coefficients (R2 and RCV
2 ) versus

number of descriptors
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Table 2 Values of five selected descriptors

Compound Stretch energy Freezing point Critical temp. Balaban index Heat of formation

1 1.77235 314.75 820.92 94500 -890.51

2 2.7335 378.13 846.7 483643 -1034.69

3 3.26059 400.67 859.68 781248 -1075.97

4 3.09364 423.21 875.3 1217626 -1117.25

5 1.75404 382.6 835.54 166689 -1083.72

6 2.20897 355.28 834.02 220116 -1084.35

7 1.9161 376.06 846.66 375302 -1000.2

8 4.07653 391.51 844.52 461983 -1155.02

9 1.79053 377.82 842.92 375302 -1125.63

10 1.93018 434.17 876.55 1217626 -1228.83

11 3.9742 404.55 896.7 308788 -798.16

12 2.31834 449.32 910.91 636211 -971.66

13 3.18001 484.07 917.42 736537 -1115.35

14 3.18 484.07 917.42 750817 -1115.35

15 2.97444 484.07 917.42 764818 -1115.35

16 6.77167 495.34 923.66 916940 -1135.99

17 15.0882 582.46 937.96 878633 -1123.6

18 12.692 582.46 937.96 924779 -1123.6

19 3.18 504.85 933.05 1070472 -1031.2

20 3.18002 502.16 938.61 1273034 -1061.63

21 4.68517 551.12 952.19 987340 -1215.83

22 4.68517 586.29 956.72 1160217 -1221.23

23 1.89434 423.64 852.59 476256 -1283.14

24 1.79679 484.46 884.28 601146 -1435.37

25 3.01805 495.33 898.87 770230 -1396.17

26 4.58027 542.52 973.16 5104652 -1643.03

27 1.51449 400.05 849.96 483643 -1257.85

28 1.4405 433.86 869.86 979551 -1319.77

29 1.37765 478.94 905.76 2229644 -1402.33

30 1.79368 444.82 871.22 979551 -1431.35

31 3.86445 523.71 940.85 3834334 -1575.83

32 1.85368 516.91 913.17 1501140 -1604.22

33 1.84343 489.59 897.96 1836255 -1604.85

34 7.78241 528.35 974.34 810072 -853.98

35 2.28189 356.95 827.08 162785 -936.89

36 1.45871 416.75 868.28 211351 -910.56

37 1.85848 462.54 860.57 453433 -1262.62

38 2.11662 507.31 886.93 915618 -1436.12

39 2.37519 552.08 918.94 1724095 -1609.62

40 1.67062 435.22 854.08 577553 -1263.25

41 1.92842 479.99 875.89 1139332 -1436.75

42 2.04053 524.76 903.21 2097827 -1610.25

43 1.85555 446.49 860.24 730062 -1283.89

44 2.85841 446.8 865.64 915618 -1192.95

45 3.02263 458.97 894.74 915618 -1018.86

46 2.72739 477.23 873 915618 -1007.26

47 3.30509 469.34 881.47 1406796 -1234.23

48 3.09135 514.11 911.28 2535125 -1407.73
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Q2 ¼ 1�
PN

i¼1 ðKi
exp � Ki

preÞ
2

PN
i¼1 ðKi

exp � Kmean
exp Þ

2
ð6Þ

where Kexp and Kpre are the experimental and the predicted

K, respectively, Kmean
exp is average of experimental

K. Another validation analysis of the comparison of ANN

with other conventional methods is RMSE (Root-Mean-

Square Error) as an indicator of reliability or accuracy of

the models. RMSE is computed on the basis that the data fit

the model, and that all misfits in the data are merely a

reflection of the stochastic nature of the model [20]. RMSE

values of the models are calculated by the Eq. 7.

RMSE ¼
PN

i¼1 Ki
exp � Ki

pre

� �2

N

2

6
4

3

7
5

0:5

ð7Þ

Table 3 Statistical parameters

of the best MLR model
i bi St. error t-Test Descriptor

0 12.78152 1.88343 6.786298 Intercept

1 -0.08124 0.015184 -5.34987 Stretch energy

2 0.008912 0.001342 6.643167 Freezing point

3 -0.01433 0.002488 -5.75913 Critical

temperature

4 2.19E-07 4.52E-08 4.857182 Balaban index

5 0.000734 0.000272 2.697069 Heat of formation

Table 2 continued

Compound Stretch energy Freezing point Critical temp. Balaban index Heat of formation

49 3.95961 558.88 947.05 4308159 -1581.23

50 3.47221 514.42 921.34 3043675 -1316.79

51 5.52459 559.19 959.56 5082408 -1490.29

52 4.18454 581.73 988.53 6965416 -1531.57

53 3.86589 544.76 921.78 739891 -923.63

54 0.224494 473 892 605383 -1243.83

55 3.18001 519.24 921.58 851615 -1120.75

56 0.00013 491.57 891.54 1473272 -1366.45

57 3.13313 536.34 923.11 2544206 -1539.95

58 3.44727 581.11 960.82 4246320 -1713.45

59 4.31655 503.15 910.31 2127769 -1296.15

60 4.91771 525.69 933.1 3030374 -1337.43

61 2.54798 570.46 973.62 4994873 -1510.93

62 3.7133 615.23 1021.34 7929252 -1684.43

63 3.47788 495.64 905.08 1079111 -1055.04

64 2.23428 558.88 947.05 3509669 -1581.23

65 2.98462 603.65 989.4 5645460 -1754.73

66 2.27967 555.69 904.98 2193684 -1635.99

67 2.22751 555.69 904.98 2193684 -1635.99

68 2.27884 555.69 904.98 2072861 -1635.99

69 2.48569 349.9 829.07 335358 -1095.41

70 3.92495 405.81 877.87 187912 -735.69

71 9.89642 494.47 907.47 571901 -1126.36

72 17.4701 696.4 1082.5 7720075 -1770.7

73 2.44724 337.55 880.95 125610 -1063.47

74 4.18525 400.93 903.41 580491 -1207.65
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Between the two approaches, ANN outperformed SMLR

significantly according to Table 4.

The statistical significance of the relationship between

the Kf and chemical structure descriptors was further

demonstrated by y-randomization procedure. Y-randomi-

zation is a tool used in validation of QSPR/QSAR models,

whereby the performance of the original model in data

description (R2) is compared to that of models built for

permuted (randomly shuffled) response, based on the ori-

ginal descriptor pool and the original model building pro-

cedure. The test was done by (1) repeatedly permuting the

Kf values of the data set, (2) using the permuted values to

generate QSPR models and (3) comparing the resulting

scores with the score of the original QSPR model generated

from non-randomized Kf values. If the original QSPR

model is statistically significant, its score should be sig-

nificantly better than those from permuted data. The mean

of R2 values for 100 trials based on permuted data is

smaller than 0.08 that significantly is different from the R2

of the models by both SMLR and ANN.

Furthermore, in order to avoid uncertainties related to a

selection of single external test set, a more severe 74

Table 4 Comparison of ANN and MLR models

Data set Compound Exp. Kf Predicted values

ANN MLR

Train 1 3.23 3.21 3.05

2 3.20 3.22 3.14

3 3.18 3.17 3.15

6 2.99 3.12 3.07

8 2.95 2.86 3.09

10 3.18 3.25 3.30

11 3.30 3.28 2.70

14 2.89 3.11 3.04

16 3.04 2.96 2.78

17 2.83 2.82 2.68

18 2.72 2.74 2.88

19 3.07 3.11 3.13

20 3.04 2.87 3.05

21 3.03 2.99 2.99

22 3.02 3.06 3.28

23 3.14 3.34 3.35

24 3.00 3.13 3.36

25 3.03 3.09 3.22

26 2.97 3.00 3.21

28 3.09 3.19 3.31

30 3.16 2.94 3.28

31 3.23 3.18 3.34

32 3.04 3.03 3.30

33 3.09 3.15 3.35

34 2.74 2.75 2.45

38 3.88 3.74 3.57

39 3.73 3.68 3.54

40 3.87 3.66 3.49

45 3.08 2.97 3.26

46 3.08 3.06 3.77

47 3.54 3.47 3.47

48 3.75 3.88 3.58

49 3.88 3.92 3.66

50 3.42 3.39 3.58

51 3.75 3.75 3.59

52 3.89 3.81 3.87

53 3.58 3.49 3.60

54 4.02 3.77 3.42

56 3.90 3.97 3.71

59 3.56 3.59 3.39

60 3.39 3.40 3.38

61 3.62 3.65 3.69

62 3.75 3.79 3.83

63 2.79 3.04 3.41

65 3.75 3.72 3.69

66 3.89 4.09 3.86

67 4.22 4.09 3.87

68 4.15 4.08 3.84

69 3.34 3.29 3.09

70 3.05 3.09 3.00

71 2.49 2.51 2.68

72 2.47 2.51 2.45

73 1.98 1.96 2.22

Table 4 continued

Data set Compound Exp. Kf Predicted values

ANN MLR

Validation 9 3.05 3.10 3.18

15 3.00 3.14 3.06

27 3.05 2.93 3.23

36 2.86 2.79 3.31

41 3.89 3.81 3.55

57 3.91 3.81 3.51

58 3.71 3.68 3.59

Test 4 3.18 3.14 3.21

5 2.94 3.09 3.32

7 3.12 3.10 3.19

12 2.97 2.96 2.97

13 3.24 3.12 3.03

29 3.22 3.17 3.42

35 2.99 3.06 3.27

37 3.88 3.87 3.59

42 3.87 3.85 3.63

43 3.48 3.72 3.50

44 3.57 3.40 3.45

55 3.79 3.49 3.31

64 3.86 3.58 3.62

74 1.48 1.64 2.31

Train Q2 0.948 0.697

RMSE 0.1033 0.2516

Test Q2 0.933 0.684

RMSE 0.1539 0.3080

All data Q2 0.945 0.692

RMSE 0.1136 0.2689
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(Leave-one-out), 5 (leave 20% out) and 3 (leave 33% out) -

fold cross validation have been used to verify the ANN

models predictability.

In (n)-fold cross-validation, the entire dataset is ran-

domly split into n approximately equal size subsets. The

model will then be trained and tested n times. At each time,

one of the n subsets is used as the test set and the other

(n - 1) subsets are put together to form a training set. The

benefit n-fold cross validation is that it is not important

how the data are divided. Every data point appears in a test

set only once, and appears in a training set (n - 1) times.

The overall accuracy of the built model is then just the

simple average of the n individual accuracy measures [19].

The averages of Q2 for 74, 5 and 3 fold cross validation are

0.977, 0.735 and 0.682, respectively. Based on Q2 defini-

tion presented in ‘‘Comparison between ANN and SMLR

models’’ section these results clearly proved the good

predictability of ANN model like external test.

The selected descriptors

The descriptors involved in the QSPR model are: (i) stretch

energy (d1), (ii) freezing point (d2), (iii) critical tempera-

ture (d3), (iv) Balaban index (d4), (v) heat of formation

(d5).

Fig. 2 Scatter plot of the MLR

predicted values versus

experimental log K values

Table 5 The (5-13-1) ANN parameters

Hidden layer parameters Output layer parameters

b2 (bias) -0.25392

Neuron IW (weights of hidden layer) b1 (bias) W (weights of output layer)

i1 i2 i3 i4 i5 Neuron Weight

1 -0.85325 1.5273 -0.76228 -1.2556 -0.42823 2.3551 1 -0.29184

2 1.3401 0.23753 1.4117 -0.83827 -0.6729 -2.0565 2 -0.16412

3 1.6861 -1.4562 1.2276 -0.95571 0.60211 -0.36929 3 0.99278

4 0.15772 1.9317 -2.1238 0.93127 2.3632 0.80242 4 1.7665

5 -1.3769 -0.43189 0.28179 -1.7616 0.26133 0.70157 5 -0.21736

6 0.54349 1.1665 0.083291 -1.2267 1.3664 -0.1965 6 -2.112

7 -2.608 -0.64044 1.3225 -0.61568 -1.4887 0.51709 7 1.0057

8 0.15037 -2.3493 -0.58666 2.2313 1.9384 0.86537 8 -1.3618

9 -0.42002 -1.1255 -0.58772 -0.80233 2.7154 1.2855 9 -1.0982

10 0.83224 -0.54429 -1.265 -1.7138 0.74057 0.3036 10 1.4517

11 -0.74453 -1.9348 0.75185 -0.98055 -0.97021 -1.8301 11 -1.0545

12 0.13032 1.1722 -0.60931 -1.5931 -1.133 1.8688 12 -0.56647

13 2.161 0.76981 0.74113 0.35639 -2.2778 2.8179 13 -0.88038
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The first selected significant descriptor (d1) involved in

the Eq. 2 is stretch energy. It represents the energy asso-

ciated with distorting bonds from their optimal length.

Defined as in Eq. 8:

Estretch ¼ 71:94
X

Bonds

Ks r � r0ð Þ2 ð8Þ

The bond stretching energy equation is based on Hooke’s

law. The Ks parameter controls the stiffness of the spring’s

stretching (bond stretching force constant), while r0 defines

its equilibrium length. Unique Ks and r0 parameters are

assigned to each pair of bonded atoms based on their atom

types (C–C, C–H, and O–C). The parameters are stored in

the Bond Stretching parameter table. The constant, 71.94,

is a conversion factor to obtain the final units as kcal/mole.

The result of this equation is the energy contribution

associated with the deformation of a bond from its equi-

librium bond length. In addition, this descriptor has

important role in some previous QSPR models [39].

The second and third significant descriptor (d2 and d3)

involved in the Eq. 2 are freezing point and critical tem-

perature [40]. Freezing points are commonly assumed to be

the phase transition when the pressure is 1 atm. A more

exact terminology for these temperatures might be the

‘‘normal’’ freezing points.

In addition, Vapor–liquid critical temperature (Tc),

pressure (Pc), and volume (Vc), are the purecomponent

constants of greatest interest. Number of methods to esti-

mate the normal boiling point and critical properties has

been proposed in the thermodynamic references [41].

The fourth descriptor is Balaban index that is rather

unknown descriptor among five selected descriptors [42,

43]. It’s a topological descriptor that defined as in Eq. 9.

Balaban index ¼ q

lþ 1

X

edgesij

ðSiSjÞ�0:5 ð9Þ

where q is number of edges in the molecular graph,

l = (q - n ? 1) is the cyclomatic number of the molec-

ular graph, n is number of atoms in the molecular graph

and Si is distance sums calculated as the sums over the

rows or columns of the topological distance matrix of the

molecule.

Fig. 3 The architecture of (5-13-1) backpropagation ANN

Fig. 4 Scatter plot of the ANN

predicted values versus

experimental log K values
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The final descriptor is heat of formation, d5. This energy

value represents the heat of formation for a molecule [44].

The heat of formation in MOPAC is the gas-phase heat of

formation at 298 K of one mole of a compound from its

elements in their standard state. The heat of formation is

composed of the following terms DHf ¼ Eelec þ Enucl þ
Eisolþ Eatomswhere Eelec is calculated from the SCF cal-

culation, Enucl is the core–core repulsion based on the

nuclei in the molecule, Eisol and Eatoms are parameters

supplied by the potential function for the elements within

your molecule.

Molecular diversity validation

Two fundamental research themes in chemical database

analysis are similarity and diversity sampling [27]. The

diversity problem involves defining a diverse subset of

‘representative’ compounds so that researchers can scan

only a subset of the huge database each time. In this study,

diversity analysis was performed for the data set to make

sure the structures of the training or test cases can represent

those of the whole ones.

We consider a database of n compounds generated from

m highly correlated chemical descriptors. Each compound

Xi is represented as a vector:

Xi ¼ xi1; xi2;xi3; . . .; xim

� �T
for

compound with i ¼ 1; 2; . . .; n:

where xij denotes the value of descriptor j belongs

compound Xi. The collective database X is represented by

the n 9 m matrix X:

X ¼ X1; X2; X3; . . .; Xnð ÞT ;

Here the superscript T denotes the vector/matrix transpose.

A distance score for two different compounds X1 and X2

can be measured by the Euclidean the mean distances of

one sample to the remaining ones were computed as

follow:

d12 ¼ X1 � X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

x1k � x2kð Þ2
s

Distance norm based on the compound descriptors:

�d1 ¼
Pn

i¼1 d1i

n� 1

And then the mean distances of all compounds were nor-

malized within the interval [0, 1]. The closer to one the

distance is the more diverse to each other the compound is.

For the data sets, the normalized mean distances of samples

versus experimental log K are shown in Fig. 5, which

illuminates the diversity of the molecules in the training

and test/validation sets. As can be seen from the Fig. 5, the

structures of the compounds are diverse in both sets. The

training set with a broad representation of the chemistry

space was adequate to ensure the model’s stability and the

diversity of test set can prove the predictive capability of

the model.

References

1. Pedersen, C.J.: Cyclic polyethers and their complexes with metal

salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)

2. Pedersen, C.J.: Cyclic polyethers and their complexes with metal

salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

3. Ghasemi, J.B., Saaidpour, S.: QSPR modeling of stability con-

stants of diverse 15-crown-5 ethers complexes using best multiple

linear regression. J. Inclusion Phenom.Macrocyclic Chem 60,

339–351 (2008)

4. Lee, M., Oh, S.Y., Pathak, T.S., Paeng, I.R., Cho, B.Y., Paeng,

K.J.: Selective solid-phase extraction of catecholamines by the

Fig. 5 Normalized diversity

values versus experimental log

K values

J Incl Phenom Macrocycl Chem (2012) 72:423–435 433

123



chemically modified polymeric adsorbents with crown ether.

J. Chromatogr. A 1160, 340–344 (2007)

5. Costero, A.M., Sanchis, J., Peransi, S., Gil, S., Sanz, V., Do-

menech, A.: Bis(crown ethers) derived from biphenyl: extraction

and electrochemical properties. Tetrahedron 60, 4683–4691

(2004)

6. Kijak, A.M., James, A.: Self-assembled monolayers of crown

ethers for solid phase extraction in flow-injection analysis. Anal.

Chim. Acta 489, 13–19 (2003)

7. Yun, L.: High extraction efficiency solid-phase microextraction

fibers coated with open crown ether stationary phase using sol–

gel technique. Anal. Chim. Acta 486, 63–72 (2003)

8. Gherrou, A., Kerdjoudj, H.: Specific membrane transport of silver

and copper as Ag(CN)3
2- and Cu(CN)4

3- ions through a supported

liquid membrane using K?-crown ether as a carrier. Desalination

151, 87–94 (2002)

9. Chauhan, B.S., Boudjouk, P.: New neutral carrier-type ion sen-

sors. Crown ether derivatives of poly(methylhydrosiloxane).

Tetrahedron Lett. 40, 4123–4126 (1999)

10. Aghaie, H., Giahi, M., Monajjemi, M., Arvand, M., Nafissi, G.H.,

Aghaie, M.: Tin(II)-selective membrane potentiometric sensor

using a crown ether as neutral carrier. Sens. Actuators B 107,

756–761 (2005)

11. Mahajan, R.K., Kumar, M., Sharma (nee Bhalla), V.: Erratum to

‘‘Cesium ion selective electrode based on calix[4]crown ether/

ester’’. Talanta 58, 445–450 (2002)

12. Su, C.C., Chang, M.C., Liu, L.K.: New Ag? and Pb2C-selective

electrodes with lariat crown ethers as ionophores. Anal. Chim.

Acta 432, 261–267 (2001)

13. Gupta, V.K., Pal, M.K., Singh, A.K.: Comparative study of

Ag(I) selective poly(vinyl chloride) membrane sensors based on

newly developed Schiff-base lariat ethers derived from 4,13-di-

aza-18-crown-6. Anal. Chim. Acta 631, 161–169 (2009)

14. Gromov, S., Alfimov, M.: Supramolecular organic photochem-

istry of crown-ether-containing styryl dyes. Russ. Chem. Bull. 46,

611–636 (1997)

15. Takeshita, M., Soong, C., Irie, M.: Alkali metal ion effect on the

photochromism of 1,2-bis(2,4-dimethylthien-3-yl)-perfluorocycl-

opentene having benzo-15-crown-5 moieties. Tetrahedron Lett.

39, 7717–7720 (1998)

16. Kawai, S.: Photochromic bis(monoaza-crown ether)s. Alkali-

metal cation complexing properties of novel diarylethenes. Tet-

rahedron Lett. 39, 4445–4448 (1998)

17. Izalt, R.M., Pawlak, K., Bradshaw, J.S.: Thermodynamic and

kinetic data for macrocycle interaction with cations and anions.

Chem. Rev. 91, 1721–2085 (1991)

18. Roberts, D.W., Marshall, S.J.: Application of hydrophobicity

parameters to prediction of the acute toxicity of commercial

surfactant mixtures. SAR QSAR Environ. Res. 4, 167–176

(1995)

19. Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P.A.,

Markopoulos, J., Igglessi-Markopoulou, O.: Prediction of intrin-

sic viscosity in polymer–solvent combinations using a QSPR

model. Polymer 47, 3240–3248 (2006)

20. Buyukbingol, E., Sisman, A., Akyildiz, M., Alparslan, F.N.,

Adejare, A.: Adaptive neuro-fuzzy inference system (ANFIS): a

new approach to predictive modeling in QSAR applications: A

study ofbneuro-fuzzy modeling of PCP-based NMDA receptor

antagonists. Bioorg. Med. Chem. 15, 4265–4282 (2007)

21. Fassihi, A., Abedi, D., Saghaie, L., Sabet, R., Fazeli, H., Bostaki,

G., Deilami, O., Sadinpour, H.: Synthesis, antimicrobial evalua-

tion and QSAR study of some 3-hydroxypyridine-4-one and

3-hydroxypyran-4-one derivatives. Eur. J. Med. Chem. 44,

2145–2157 (2009)

22. Yao, X., Wang, Y., Zhang, X., Zhang, R., Liu, M., Hua, Z., Fan,

B.: Radial basis function neural network-based QSPR for the

prediction of critical temperature. Chemom. Intell. Lab. Syst. 62,

217–225 (2002)

23. Kardanpour, Z., Hemmateenejad, B., Khayamian, T.: Wavelet

neural network-based QSPR for prediction of critical micelle

concentration of Gemini surfactants. Anal. Chim. Acta 531,

285–291 (2005)

24. Turner, J.V., Glass, B.D., Agatonovic-Kustrin, S.: Prediction of

drug bioavailability based on molecular structure. Anal. Chim.

Acta 485, 89–102 (2003)

25. Xu, J., Liang, H., Chen, B., Xu, W., Shen, X., Liu, H.: Linear and

nonlinear QSPR models to predict refractive indices of polymers

from cyclic dimer structures. Chemom. Intell. Lab. Syst. 92,

152–156 (2008)

26. Mercader, A.G., Duchowicz, P.R., Sanservino, M.A., Fernández,

F.M., Castro, E.A.: QSPR analysis of fluorophilicity for organic

compounds. J. Fluorine Chem 128, 484–492 (2007)

27. Luan, F., Liu, H., Gao, Y., Li, Q., Zhang, X., Guo, Y.: Prediction

of hydrophile–lipophile balance values of anionic surfactants

using a quantitative structure–property relationship. J. Colloid

Interface Sci. 336, 773–779 (2009)

28. Irandoust, M., Shamsipur, M., Daraei, H.: Proton NMR study of

the stoichiometry, stability and thermodynamics of complexation

of Rb? ion with 18-crown-6 in binary dimethylsulfoxide–nitro-

benzene mixtures. J. Inclusion Phenom.Macrocyclic Chem 66,

365–370 (2010)

29. Shamsipur, M., Irandoust, M., Alizadeh, K., Lippolis, V.: Proton

NMR study of the stoichiometry, stability and thermodynamics of

complexation of Ag? ion with octathia-24-crown-8 in binary

dimethylsulfoxide–nitrobenzene mixtures. J. Incl. Phenom. Mac-

rocycl. Chem. 59, 203–209 (2007)

30. Shamsipur, M., Irandoust, M.: A proton NMR study of the stoi-

chiometry and stability of 18-crown-6 complexes with K?, Rb?

and Tl? ions in binary dimethyl sulfoxide-nitrobenzene mixtures.

J. Solution Chem 37, 657–664 (2008)

31. Niculescu, S.P.: Artificial neural networks and genetic algorithms

in QSAR. J. Mol. Struct. THEOCHEM 622, 71–83 (2003)

32. Dewar, M.J.S.: J. Am. Chem. Soc. 107, 3902–3909 (1985)

33. Moon, T., Chi, M.W., Choi, M.J., Yoon, C.N.: Quantitative

structure–polarization relationships (QSPR) study of BTEX

tracers for the formation of antibody–BTEX–EDF complex.

Bioorg. Med. Chem. Lett. 14, 3461–3466 (2004)

34. Chatterjee, S., Price, B.: Regression analysis by example. Wiley,

New York (1977)

35. Ghasemi, J., Saaidpour, S.: Quantitative structure–property rela-

tionship study of n-octanol–water partition coefficients of some

of diverse drugs using multiple linear regression. Anal. Chim.

Acta 604, 99–106 (2007)

36. Hagan, T., Demuth, H.B.: Neural network design. PWS Pub-

lishing Company, Boston, MA (1996)

37. Jorjani, E., Chelgani, S.C., Mesroghli, S.: Application of artificial

neural networks to predict chemical desulfurization of Tabas

coal. Fuel 87, 2727–2734 (2008)

38. Jalali-Heravi, M., Fatemi, M.H.: Prediction of thermal conduc-

tivity detection response factors using an artificial neural net-

work. J. Chromatogr. A 897, 227–235 (2000)

39. Chung, W.K., Hou, Y., Holstein, M., Freed, A., Makhatadze, G.I.,

Cramer, S.M.: Investigation of protein binding affinity in multi-

modal chromatographic systems using a homologous protein

library. J. Chromatogr. A 1217, 191–198 (2010)

40. Zaier, I., Shu, C., Ouarda, T.B.M.J., Seidou, O., Chebana, F.:

Estimation of ice thickness on lakes using artificial neural net-

work ensembles. J. Hydrol. 383, 330–340 (2010)

434 J Incl Phenom Macrocycl Chem (2012) 72:423–435

123



41. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The properties of

gases and liquids, 5th edn. The McGraw-Hill Companies, New

York (1997)

42. Balaban, A.T.: Chem. Phys. Lett. 89, 399–404 (1982)

43. Balaban, A.T.: Pure Appl. Chem. 55, 199–206 (1983)

44. Yang, P., Chen, J., Chen, S., Yuan, X., Schramm, K., Kettrup, A.:

QSPR models for physicochemical properties of polychlorinated

diphenyl ethers. Sci. Total Environ. 305, 65–76 (2003)

J Incl Phenom Macrocycl Chem (2012) 72:423–435 435

123


	QSPR probing of Na+ complexation with 15-crown-5 ethers derivatives using artificial neural network and multiple linear regression
	Abstract
	Introduction
	Materials and methods
	Dataset
	Molecular modeling, molecular optimization and descriptor generation
	Selection of molecular descriptors
	Methodology of modeling

	Results and discussion
	SMLR modeling
	ANN modeling
	Comparison between ANN and SMLR models
	The selected descriptors
	Molecular diversity validation

	References


